Computer modeling of force-induced titin domain unfolding.
نویسندگان
چکیده
Titin, a 1 micron long protein found in striated muscle myofibrils, possesses unique elastic and extensibility properties, and is largely composed of a PEVK region and beta-sandwich immunoglobulin (Ig) and fibronectin type III (FnIII) domains. The extensibility behavior of titin has been shown in atomic force microscope and optical tweezer experiments to partially depend on the reversible unfolding of individual Ig and FnIII domains. We performed steered molecular dynamics simulations to stretch single titin Ig domains in solution with pulling speeds of 0.1-1.0 A/ps, and FnIII domains with a pulling speed of 0.5 A/ps. Resulting force-extension profiles exhibit a single dominant peak for each domain unfolding, consistent with the experimentally observed sequential, as opposed to concerted, unfolding of Ig and FnIII domains under external stretching forces. The force peaks can be attributed to an initial burst of a set of backbone hydrogen bonds connected to the domains' terminal beta-strands. Constant force stretching simulations, applying 500-1000 pN of force, were performed on Ig domains. The resulting domain extensions are halted at an initial extension of 10 A until the set of all six hydrogen bonds connecting terminal beta-strands break simultaneously. This behavior is accounted for by a barrier separating folded and unfolded states, the shape of which is consistent with AFM and chemical denaturation data.
منابع مشابه
Stretching single-domain proteins: phase diagram and kinetics of force-induced unfolding.
Single-molecule force spectroscopy reveals unfolding of domains in titin on stretching. We provide a theoretical framework for these experiments by computing the phase diagrams for force-induced unfolding of single-domain proteins using lattice models. The results show that two-state folders (at zero force) unravel cooperatively, whereas stretching of non-two-state folders occurs through interm...
متن کاملMechanically induced titin kinase activation studied by force-probe molecular dynamics simulations.
The conversion of mechanical stress into a biochemical signal in a muscle cell requires a force sensor. Titin kinase, the catalytic domain of the elastic muscle protein titin, has been suggested as a candidate. Its activation requires major conformational changes resulting in the exposure of its active site. Here, force-probe molecular dynamics simulations were used to obtain insight into the t...
متن کاملIndividual Globular Domains and Domain Unfolding Visualized in Overstretched Titin Molecules with Atomic Force Microscopy
Titin is a giant elastomeric protein responsible for the generation of passive muscle force. Mechanical force unfolds titin's globular domains, but the exact structure of the overstretched titin molecule is not known. Here we analyzed, by using high-resolution atomic force microscopy, the structure of titin molecules overstretched with receding meniscus. The axial contour of the molecules was i...
متن کاملUnfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils.
The elastic section of the giant muscle protein titin contains many immunoglobulin-like domains, which have been shown by single-molecule mechanical studies to unfold and refold upon stretch-release. Here we asked whether the mechanical properties of Ig domains and/or other titin regions could be responsible for the viscoelasticity of nonactivated skeletal-muscle sarcomeres, particularly for st...
متن کاملDynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces.
The mechanical stability of force-bearing proteins is crucial for their functions. However, slow transition rates of complex protein domains have made it challenging to investigate their equilibrium force-dependent structural transitions. Using ultra stable magnetic tweezers, we report the first equilibrium single-molecule force manipulation study of the classic titin I27 immunoglobulin domain....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in experimental medicine and biology
دوره 481 شماره
صفحات -
تاریخ انتشار 2000